
 1

MATHEMATICAL MODELING AND DESIGN 
 

Luigi Mussio (1) – Giovanna Sona (2) 
(1) Politecnico di Milano – DICA – Piazza L. da Vinci, 32 – 20133 Milano 
Tel. 02-2399-6501 – Fax 02-2399-6602 – e-mail luigi.mussio@polimi.it 
(2) Politecnico di Milano – DICA – Piazza L. da Vinci, 32 – 20133 Milano 

Tel. 02-2399-6530 – Fax 02-2399-6550 – e-mail giovanna.sona@polimi.it 

 

Abstract – The main goal of GIS is the representation of reality, using models that can represent it the best 

they can. In this way, every further analysis and representation can be inserted in a proper geographic cloud. 

Indeed often we can have different interpretations of the same phenomenon and we don’t have a unique 

solution for the creation of the model. The different interpretation of the phenomena often depends on the 

person who observes it, and on all the different persons involved in the modeling process. 

Each of them could have a different way to interpret and describe what they see. It is not always so easy to 

create a model of reality, for example deciding where is the beginning of a forest or a lake depends on the 

perspective with which the model’s designer observes the phenomenon. 

We can have also time-depending objects that cannot have obviously a unique and defined interpretation, 

but it will depend on the instant of observation. Above all the representation of reality depends on the detail 

level we have to describe and from the future use of the model. The representation of reality: 

 

 depends on the perspective of the model’s designer; 

 prescribes what users will be able to do when extracting information; 

 is very difficult (or often impossible) to be transformed at a larger stage; 

 is seldom for multiple purposes. 

 

This subjectivity of representation obliges to make a formalization of abstraction processes of reality, in a 

way to set an efficient and consistent object able to interpret geographical information. 

 

Successively a method for automatic reconstruction of models of a piecewise smooth surface is illustrated. 

 

 Very often, we have a set of positions and want a curve to interpolate (pass through) them smoothly; so 

the Catmull-Rom family of interpolating or approximating splines, also called Over-hauser splines, are 

useful in this situation. 

 When the object has a complex shape, it is very difficult to obtain a good reconstruction and a real-

looking representation. If the object has a continuos curvature (convex hull) it is possible to generate a 

3D triangular surface employing the Delaunay algorithm, generalized to the 3D case. 

 Then if one wants to have a good result in terms of visual display it is necessary to apply another 

algorithm that produces Bézier splines on a triangular support. Of course, a realistic reconstruction of the 

object shape needs a high hardware performance to obtain as a final product the display of the 

interpolated surface (using CAD software). 

 

Some applications will be shown by means of examples, wich present both GIS implementation and graphic 

computer aided representation. 
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PART I – GIS 

 

Geographic Information System 

 

Project steps 

 

 external, descriptive and completely free; 

 conceptual, descriptive, but formal; 

 logical, implemented by suitable structure, as: 

 

 a table; 

 a tree (in hierarchical form); 

 a network; 

 in relational form (using dual properties). 

 

 physical (by software in the computer). 

 

A vector example 

 

 

 

AREA  LINE  POINT 

ID_AREA name  ID_line length  ID_point X Y 

I   a   1 0. 0. 

    b   2 4. 0. 

SURFACE  c   3 6. 1. 

ID_surf. area type  d   4 4. 3. 

A    e   5 1. 3. 

B    f   6 4. 4. 

C    g   7 6. 2. 

    h      

    i      
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 Implemented by a tree (in hierarchical form); 

 

   ID_area ID_line ID_ initial point ID_final point 

   A a 1 5 

   A c 5 4 

   A e 4 2 

ID_AREA ID_surf.  A d 2 1 

I A  B b 5 6 

I B  B i 6 4 

I C  B c 4 5 

   C e 2 4 

   C i 4 6 

   C h 6 7 

   C g 7 3 

   C f 3 2 

 

 implemented by a network; 

 

ID_area ID_line  ID_line ID_initial 

point 

ID_final 

point 

A a  a 1 5 

A c  b 5 6 

A d  c 4 5 

A e  d 1 2 

B b  e 2 4 

B c  f 2 3 

B i  g 3 7 

C e  h 6 7 

C f  i 4 6 

C g     

C h     

C i     

 

 its corresponding dual tree, using dual properties (again in hierarchical form), where: 

 

 surfaces become nodes; 
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 points become regions; 

 line remain line (often called arcs). 

 

 

 

ID_space ID_region  ID_region ID_arc ID_region ID_arc ID_region ID_arc 

S 1  1 a 3 g 5 external 

S 2  1 d 3 external 6 b 

S 3  1 external 4 c 6 h 

S 4  2 d 4 e 6 i 

S 5  2 e 4 i 6 external 

S 6  2 f 5 a 7 g 

S 7  2 externak 5 b 7 h 

   3 f 5 c 7 external 

 

 

 implemented in relational form (using dual properties). 

 

 

ID_line ID_initial 

point 

ID_final 

point 

ID_right 

area 

ID_left 

area 

a 1 5 A external 

b 5 6 B external 

c 4 5 B A 

d 2 1 A external 

e 2 4 C A 

f 3 2 C external 

g 7 3 C esterno 

h 6 7 C esterno 

i 4 6 C B 



 5

A raster example 

 

Organization rules (in decreasing order): dominance, importance and center. 

 

 

 

Compression tecniques: 

(Pyramid) quadtres  

 

Chain codes  
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Run-lengh codes  
 

Block codes  

 

RUN-LENGTH CODES  BLOCK CODES 

Row Column  Origin Arc 

2 6, 9  6,2 4 

3 6, 9  2,6 4 

4 6, 9  6,6 4 

5 6, 9  8,10 4 

6 2, 9 

7 2, 9 

8 2, 13 

9 2, 13 

10 10, 13 

11 10, 13 

 

A 3D vector example 

 

 A point connects more than one arc, polygon and polyhedron; 
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 a line connects only two points, but more than one polygon and polyhedron; 

 a polygon connects more than one point and line, but only two polyhedrons; 

 a polyhedron connects more than one point, line and polygon. 

 

 
 

 with the corresponding dual 
1
 tree, using dual properties associates, which associates: 

 

 polydrons to nodes (i.e. dual points); 

 polygons to arcs (i.e. dual lines); 

 

so that a “crosslink” table joins the incidence table (between points and lines) and the adjacency table 

(between polygons and polyhedrons). 

 
1 Duality is a property, which permits to associate two different classes of objects, passing the characteristics of the first class to the 
second one. The generalization of duality is the complmentary, which allows for linking the features of many classes together. 
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A 3D raster example 

 

 (Pyramid) octries (as for image and/or map pyramids); 

 generalized run-lengh codes (sequentially plane by plane) 

 (solid) block codes. 

 

Time-variant Dynamic GIS and its characteristic time 

 

 Constant (i.e. non time-variant); 

 periodic or quasi-periodic; 

 a–periodic (i.e. with a drift); 

 in mixed form; 

 with one or more breakdown point(s). 

 

Object modeling 

 

 3 classes of relations in the monodimensional space: between points, points and lines, lines;  

 6 classes of relations in the bidimensional space: beyond to those of the previous case, between points 

and surfaces, lines and surfaces, surfaces; 

 10 classes of relations in the three-dimensional space: beyond to those of the previous cases, between 

points and 3D bodies, lines and 3D bodies, surfaces and 3D bodies, 3D bodies. 

 

In one dimension, there exist 7 topological relations 
 

 Point – point: separate 

   coincident 

 Point – line:  external 

   internal 

 Line – line:  separate 

   connected 

   internal 

 

In two dimensions, 10 new relations join to the previous ones, 
defined for the monodimensional case, reaching the number of 17 topological relations 

 

 Point – surface: external 

   internal 

 Line – surface: external 

   connected 

   secant 

   internal 

   enucleating 
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 Surface – surface: external 

   connected 

   internal 

 

In three dimensions, 15 new relations join the previous ones, 
defined for the bidimensional case, reaching the number of 32 topological relations 

 

 Point – body:  external 

   internal 

 Line – body: external 

   connected 

   secant 

   internal 

   enucleating 

 Surface – body: external 

   connected 

   secant 

   internal 

   enucleating 

 Body – body:  external 

   connected 

   internal 

 

Topological Relations in 1D  

 

Topological Relations in 2D 
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Topological Relations in 3D 



 11

Main geometric relations among the primary elements 

 

 10 geometric relations, for the mono-dimensional case; 

 32 geometric relations, for the two-dimensional case; 

 230 geometric relations, for the three-dimensional case. 

 

Mono-dimensional case: 
 
 Point – point: separate (1) 

   coincident (2) 

 Point – line:  external (3) 

   marginal (4) 

    internal  (5) 

 Line – line:  external (6) 

   semi-external (7) 

   overlapping (8) 

   semi-internal (9) 

   internal  (10) 

 

Bidimensional case: 
 
 Point – point: separate (1) 

   coincident (2) 

 Point – line:  external (3) 

   marginal (4) only if the line is open 

   internal  (5) 

   included (6) only if the line is close 

 Point – surface:  external (7) 

   marginal (8) 

   internal  (9) 

 Line – line:  external (10) 

   semi-external (11) 

   semi-intersect. (12) 

   intersecting (13) 

   overlapping (14) 

   semi-internal (15) 

   internal  (16) 

   semi-included (17) only at least a line is close 

   included (18) 

 Line – surface: external (19) 

   semi-externalErrore. Il segnalibro non è definito. (20) 

   semi-marginal (21) 

   marginal (22) 
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   intersecting  (23) 

   secant  (24) 

   semi-internal (25) 

   internal  (26) 

   enucleating (27) 

 Surface – surface:  external (28) 

   semi-external (29) 

   overlapping (30) 

   semi-internal (31) 

   internal  (32) 

 

Three-dimensional case 

 

Note: In this case, the classification of the geometric relations allows various possibilities. In most cases 

considering the number of the geometric relations in correspondence to the cardinality of the group of spatial 

symmetry, it is quite easy to reach the number of 230 elements. In fact, while a point is a point and a body a 

body, a line can be open or close, and it can occupy an open area or close area, as well as a volume; 

moreover a surface can be open or close, and it can occupy a volume. Therefore five distinguished types of 

lines are taken into account: stick, ring, doily, basket and skein, and three distinguished types of superficial 

are also taken into account: leaf, ball and bag. The resulting connections are: 

 

 Point – point: separate (1) 

   coincident (2) 

 Point – stick: separate (3) 

   marginal (4) 

   internal  (5) 

 Point – ring: separate (6) 

   internal  (7) 

 Point – doily: separate (8) 

   marginal (9) 

   internal  (10) 

 Point – leaf:  separate (11) 

   marginal (12) 

   internal  (13) 

 Point – basket: separate (14) 

   internal  (15) 

   included (16) 

 Point – ball:  separate (17) 

   internal  (18) 

   included (19) 

 Point – skein: separate (20) 

   marginal (21) 

   internal  (22) 

 Point – bag: separate (23) 

   marginal (24) 

   internal  (25) 

 Point – body: separate (26) 

   marginal (27) 

   internal  (28) 

 

 Stick – stick: separate (29) 

   marginal (30) 

   intersected (31) 

   internal  (32) 

 Stick – ring:  separate (33) 

   marginal (34) 

   intersected (35) 

   internal  (36) 

 Stick – doily: separate (37) 

   marginal (38) 

   overlapping (39) 
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   marginal (40) 

   internal  (41) 

 Stick – leaf:  separate (42) 

   marginal (43) 

   overlapping (44) 

   marginal (45) 

   internal  (46) 

 Stick – basket: separate (47) 

   marginal (48) 

   overlapping (49) 

   marginal (50) 

   included (51) 

 Stick – ball:  separate (52) 

   marginal (53) 

   overlapping (54) 

   marginal (55) 

   included (56) 

 Stick – skein: separate (57) 

   marginal (58) 

   overlapping (59) 

   marginal (60) 

   internal  (61) 

 Stick – bag:  separate (62) 

   marginal (63) 

   overlapping (64) 

   marginal (65) 

   internal  (66) 

 Stick – body: separate (67) 

   marginal (68) 

   overlapping (69) 

   marginal (70) 

   internal  (71) 

 

 Ring – ring:  separate (72) 

   tangent  (73) 

   linked  (74) 

   intersected (75) 

 Ring – doily: separate (76) 

   tangent  (77) 

   overlapping (78) 

   internal  (79) 

 Ring – leaf:  separate (80) 

   tangent  (81) 

   overlapping (82) 

   internal  (83) 

 Ring – basket: separate (84) 

   tangent  (85) 

   overlapping (86) 

   marginal (87) 

   included (88) 

 Ring – ball:  separate (89) 

   tangent  (90) 

   overlapping (91) 

   marginal (92) 

   included (93) 

 Ring – skein: separate (94) 

   tangent  (95) 

   overlapping (96) 

   marginal (97) 

   internal  (98) 

 Ring – bag:  separate (99) 

   tangent  (100) 

   overlapping (01) 

   marginal (02) 

   internal  (03) 

 Ring – body: separate (04) 

   tangent  (05) 

   overlapping (06) 

   marginal (07) 

   internal  (08) 

 

 Doily – doily: separate (09) 

   tangent  (10) 

   overlapping (11) 

   internal  (12) 

 Doily – leaf:  separate (13) 

   tangent  (14) 

   overlapping (15) 

   internal  (16) 

 Doily – basket: separate (17) 

   tangent  (18) 

   overlapping (19) 
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   marginal (20) 

   included (21) 

 Doily – ball:  separate (22) 

   tangent  (23) 

   overlapping (24) 

   marginal (25) 

   included (26) 

 Doily – skein: separate (27) 

   tangent  (28) 

   overlapping (29) 

   marginal (30) 

   internal  (31) 

 Doily – bag:  separate (32) 

   tangent  (33) 

   overlapping (34) 

   marginal (35) 

   internal  (36) 

 Doily – body: separate (37) 

   tangent  (38) 

   overlapping (39) 

   marginal (40) 

   internal  (41) 

 

 Leaf – leaf:  separate (42) 

   tangent  (43) 

   overlapping (44) 

   internal  (45) 

 Leaf – basket: separate (46) 

   tangent  (47) 

   overlapping (48) 

   marginal (49) 

   included (50) 

 Leaf – ball:  separate (51) 

   tangent  (52) 

   overlapping (53) 

   marginal (54) 

   included (55) 

 Leaf – skein: separate (56) 

   tangent  (57) 

   overlapping (58) 

   marginal (59) 

   internal  (60) 

 Leaf – bag:  separate (61) 

   tangent  (62) 

   overlapping (63) 

   marginal (64) 

   internal  (65) 

 Leaf – body: separate (66) 

   tangent  (67) 

   overlapping (68) 

   marginal (69) 

   internal  (70) 

 

 Basket – basket: separate (71) 

   tangent  (72) 

   overlapping (73) 

   included (74) 

 Basket – ball: separate (75) 

   tangent  (76) 

   overlapping (77) 

   included (78) 

 Basket – skein: separate (79) 

   tangent  (80) 

   overlapping (81) 

   incl. / internal (82) 

 Basket – bag: separate (83) 

   Tangent (84) 

   overlapping (85) 

   incl. / internal (86) 

 Basket – body: separate (87) 

   tangent  (88) 

   overlapping (89) 

   incl. / internal (90) 

 

 Ball – ball:  separate (91) 

   tangent  (92) 

   overlapping (93) 

   included (94) 

 Ball – skein: separate (95) 

   tangent  (96) 

   overlapping (97) 

   incl. / internal (98) 
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 Ball – bag:  separate (99) 

   tangent  (200) 

   overlapping (01) 

   incl. / internal (02) 

 Ball – body:  separate (03) 

   tangent  (04) 

   overlapping (05) 

   incl. / internal (06) 

 

 Skein – skein: separate (07) 

   tangent  (08) 

   overlapping (09) 

   internal  (10) 

 Skein – bag: separate (11) 

   tangent  (12) 

   overlapping (13) 

   internal  (14) 

 Skein – body: separate (15) 

   tangent  (16) 

   overlapping (17) 

   internal  (18) 

 

 Bag – bag:  separate (19) 

   tangent  (20) 

   overlapping (21) 

   internal  (22) 

 Bag – body: separate (23) 

   tangent  (24) 

   overlapping (25) 

   internal  (26) 

 

 Body – body: separate (27) 

   tangent  (28) 

   overlapping (29) 

   internal  (230) 

 

 

Note: This long list could further be lengthened, taking into account particular conditions of tangency, 

intersection and superimposition. Furthermore these conditions can be simple, double or multiple and can be 

punctual, linear and aerial. Therefore taking into account the length of the present list and the richness of the 

proposed under-classifications (as shown in the following figures), maybe also 4783 cases could be found 

according to the cardinality of the recently discovered four-dimensional symmetry group. 

 

disjoint meet overlap equal 

contains covers inside covered by 

  
Region-Region Relations      Line-Region Relations 

 

 Disjoint 
 

Contains 
 

Bypass 

 
Meet 

 
Covered 

 
Fork 

 
Equal 

 
Inside   

 Overlap 
 

Covered by   

 

Line-Line Relations 
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The problem 

Several applications in data imaging and modeling require the definition of conceptual models, which imply 

the knowledge of the data topology. Codification of topology is really important to avoid different 

interpretations of the same object or phenomenon: 

 

 a classical approach lists all Boolean relations and selects among them the admissible ones from a 

geometric point of view; 

 an alternative approach combines the topological and geometric relations between primary elements 

with the symmetries (in the spaces in which the complex objects are located). 

 

The alternative has been recently developed; herefore it will be here presented in order to remark analogies 

and differences, enhancing how to treat common data independent from a reference frame. 

Object modeling allows the widest modalities to represent bodies and features for their studies and analysis. 

The relations between characteristic elements (points, lines, surfaces and 3D bodies) determine the validity 

of this modeling and their sets have correspondences with the groups of symmetry in the mono-dimensional, 

two-dimensional and three-dimensional spaces of the formal algebra. 

The object (eventually dynamic, because time-variant) modeling is an innovative and technologically 

advanced instrument for the study of spatial phenomena and their temporal dynamics. Unfortunately the use 

of this instrument is still rare; in fact it remarkably increases the complexity of realization and management of 

the informatics systems. 

The production of the cartography has been, for a long time, a refined art. The maps, created from geodetic 

measurements and updated thickening by survey operations, are completed from the handicraft experience 

of the mapmakers. 

The impressive spread of technology is carrying to give over the traditional map production systems, 

preferring the new and powerful digital systems of map production. 

The object paradigm supplies a high level of abstraction of the physical structure of the data; it is able to 

model the system according to the definition of the data (objects), as well as to operate on the concept of 

attributes and relations, being both stored as an integrating part of the same objects. 

The object oriented representation permits to create complex objects, like polygons, 3D bodies, etc, to 

analyze and to manipulate them like single objects (even if they are combinations of objects). 

This characteristic eliminates the necessity of clarifying all the geographic and semantic attributes of the 

objects. Furthermore the object-oriented approach allows the easy description of new types of data, defining 

operations on new objects and structuring the objects in a hierarchical way. In this context it is of particular 

interest to use those tools, like the extensions, able to explore the data, to process them in external phases 

where specific operations are executed, and to import the results; because of their high qualification, the 

dimension and complexity of these external procedures exclude their insertion inside the system. 

The development of object oriented systems is going in two different directions: adding all the typical 

functions of the object paradigm to a relational database, or constructing a new independent system. The 

first approach is very robust, because the databases are a mature product, while the second approach is still 

an open issue in the scientific and technological research. In both cases, the main objective is the production  

of a set of procedures able to process spatially referenced data. 
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The most important procedures for the data management tend to solve these main problems: data storage 

and information retrieval according to suitable requirements. Particularly for the management of spatially 

referenced data it is necessary to create new entities (polygons, 3D bodies, etc.) and to define rules for their 

processing, like distance, incidence, adjacency, etc. However in the object oriented systems, some problems 

with difficult solution, presented by the relational models, are still not completely solved. At present time, a 

hybrid system seems to be the best solution for the creation of robust physical (relational) data structures 

and flexible logical (object oriented) data models. 

An object can be described as a conceptual entity, easily defined by its data and environment. The 

environment includes a set of operations and methods, valid on the object itself. Its state is represented by 

the values assumed by local variables. Every single object belongs to a class, which defines the type of 

object. The classes can have variables, describing the characteristics of the class itself. If some classes have 

common variables and methods, it is possible to define a super–class, which groups the variables and the 

methods of all these classes. For convention, the universal super–class (i.e. the root of the system) 

constitutes the first level of the hierarchical level structure describing the system. 

An interesting object oriented data structure can be obtained by introducing a linkage between spatially 

referenced objects and their features, for example areas with their boundaries, edges with isolated vertices. 

Thus the spatially referenced objects are identified and described by means of their geometric and thematic 

features. This observation leads to a first formal requirement, in order to construct a formal data structure: 

 

 every object must be associated to an identifier (name or number); 

 every identifier must have a link to the attributes of an object. 

 

Objects with common geometric or thematic aspects can be grouped into the same class (set of objects), 

identified by a certain name; the list of attributes of a class supplies the names of the attributes, whose 

values are assumed by the objects themselves. This means that every object, belonging to a class, has a list 

of values, one for each attribute of the class. 

Common attributes lead to a super–class (i.e. a class of classes), which is associated to the list of attribute 

values assumed by the classes. It is evident that the construction of a super-class introduces a hierarchy in 

the level structure of the classes. 

At the top level, the super-class presents its list of attributes and methods. At the intermediate level, the 

class presents a list of attributes subdivided in two parts: the former contains the values of the attributes 

associated to the super–class, the latter contains the list of attributes of the class itself. At the lowest level, 

the object presents a list of attributes estimated by the lists of the attributes of the super–class or the 

belonging class. The estimation of an attribute, at the class level, implies that all the objects belonging to the 

same class have the same value for the selected attribute. 

Furthermore it is possible to introduce more hierarchical levels: every level inherits the list of attributes of the 

higher level and transmits the list of attributes to the lower level. At the lowest level of the hierarchy, all the 

attributes must be estimated. 

Classes of objects and objects are defined so that every object belongs to one (and only one) class; this 

requirement is equivalent to the convention according the classes to which must be mutually exclusive. 
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The objects can be classified according to their geometric or thematic features; therefore a second 

convention states that a class contains only objects of a certain type. 

Sometimes this convention seems to be too rigid; however it allows the construction of a very simple and 

transparent structure. In some rare cases, a possible solution is the construction of complex objects. 

The last convention implies a relation many-to-one type between objects and classes. Using this object-

oriented approach, geometric structures with different complexity can be described by objects belonging to 

suitable classes of features. For instance: 

 

 a punctual structure, by means of an object belonging to the class of the points; 

 a liner structure, by means of an object belonging to the class of the lines;  

 a bidimensional structure, by means of an object belonging to the class of the surfaces; 

 a three-dimensional structure, by means of an object belonging to the class of the 3D bodies. 

 

In order to construct a formal data structure, it is necessary to identify the geometric features of the object 

and their relations. This can be done with different methods. A possible approach uses the graph theory, 

putting into a one-to-one relation the thematic and the corresponding geometric elements, and describing the 

topological relations between the various elements. The elements can be described in two different ways: 

 

 in a parametric form, i.e. through parameters, which define the equation of a mathematical curve; 

 through a sequence of points connected by a polyline, being the link between two consecutive points a 

segment of one straight line. 

 

The second solution implies the introduction of new types of points beyond the nodes: these new points only 

contain information concerning the point positions. In both cases, the following conventions are adopted: 

 

 when a complex object is analyzed through a graph, all the points describing its geometry are treated as 

nodes, each node having the position given by the coordinates of the corresponding point; 

 by using the duality principle, all the planar figures derived by the decomposition of a complex figure are 

treated like nodes of a dual graph, each node having the position given by the coordinates of the 

centroids of the same figure; 

 by using the duality principle, the 3D bodies, derived by the decomposition of a complex solid object, 

are treated like nodes of a dual graph, each node having the position given by the coordinates of the 

centroids of the same body; 

 all the segments of straight lines are represented by edges of the graph and each edge has an initial 

and a final node; 

 by using the duality principle, all the surfaces in 3D space are represented by edges of a dual graph and 

each edge has an initial and a final node. 

 

In order to avoid geometric ambiguities, two new conventions are introduced: 

 

 for each couple of nodes, there is no more than one edge, connecting them; 
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 the edges cannot be intersected in the simple case of a planar graph; the same requirement is imposed 

for the entire planar sub-graphs, derived by a possible decomposition of a spatial graph. 

 
The connection between geometric and thematic elements is performed through identifiers. The successive 

step, in the definition of a formal data structure for a complex object, consists of the analysis of the linkage 

between the geometric elements (nodes, edges) and the thematic elements (points, lines, surfaces and 3D 

bodies): 

 

 the linkage between features, like points (thematic elements) and nodes (geometric elements) consists 

of the following condition: every point is represented by one node (and one only);  

 if one node does not represent any feature, a null identifier is used. 

 

The connection between the other geometric and thematic elements with more complexity is set up as 

follows: 

 

 an edge can be part of a characteristic line; 

 if an edge does not belong to a characteristic line, a null identifier is imposed; 

 in the simple case (planar graph or planar subgraphs derived by a decomposition of a spatial graph) an 

edge has always one (and only one) characteristic area at its right and one (and only one) characteristic 

area at its left;  

 a face (i.e. an edge, by using the duality principle) can be part of a characteristic surface (i.e. a 

characteristic line, by using the same duality principle);  

 if a face does not belong to a characteristic surface, a null identifier is imposed; 

 by using the duality principle, a surface in 3D space has always one (and only one) characteristic 3D 

body at its right and a characteristic 3D body 3D (and only one) at its left; 

 if an edge (or a face) is a boundary element, one of the two characteristic surfaces (or one of the two 

characteristic 3D bodies) is called external element;  

 if a characteristic line (or a characteristic surface) is a boundary element between two characteristic 

surfaces (or two characteristic 3D bodies), the edges (or the faces) belonging to this boundary are part 

of the same characteristic line (of the same characteristic surface);  

 on the contrary, if an edge (or a face) is not part of a characteristic line (or a characteristic surface), or it 

does not belong to a certain boundary, the edge and its characteristic line (or the face and its 

characteristic surface) intersect a characteristic surface (or a characteristic 3D body) and the right-left 

linkage is referred to the same surface (or to the same 3D body). 

 

Finally in the case of 3D bodies modeling, it is necessary to establish a cross-connection table between 

edges and faces (or characteristic lines and characteristic surfaces), so that a topological linkage between 

primary graphs and dual graphs is present. 

In fact, while this linkage is directly defined by the edges in the planar graphs, the primary and dual spatial 

graphs are completely separated (if they are not previously decomposed in planar sub-graphs); as a 

consequence, the above mentioned cross-connection table is strictly required. 
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Three real examples 

 

 

Leonardo da Vinci square fountain (Milan) 

 

  

 
 

Solid modeling and 
element explosion 
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Mušutište (Kosovo) church before and after il 2004 

 

Fresco in the apse  

 

 Detail of the distruction 
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CHARACTERISTIC COORDINATES 
POINTS x y z 

1 0.000 2.000 0.000 
6 2.000 2.000 0.000 
13 2.000 2.000 1.000 
14 2.000 2.000 1.200 
3 10.000 2.000 0.000 
9 10.000 2.000 1.000 
10 10.000 2.000 1.200 
2 12.000 2.000 0.000 
5 2.000 11.000 0.000 
12 2.000 11.000 1.000 
4 10.000 11.000 0.000 
11 10.000 11.000 1.000 
 7 2.000  0.000  0.500 
15 2.000  0.000  1.200 
8 10.000  0.000  0.500 
16 10.000  0.000  1.200 
21 3.000 2.000 1.000 
22 3.000 2.000 1.200 
17 9.000 2.000 1.000 
18 9.000 2.000 1.200 
20 3.000 10.000 1.000 
19 9.000 10.000 1.000 
23 4.000 2.000 1.200 
24 5.000 1.000 1.200 
25 7.000 1.000 1.200 
26 8.000 2.000 1.200 
30 3.000 2.000 5.000 
29 3.000 10.000 5.000 
27 9.000 2.000 5.000 
28 9.000 10.000 5.000 
32 6.000 2.000 6.000 
31 6.000 10.000 6.000 
35 6.000 2.000 4.500 
33 5.000 2.000 5.500 
34 7.000 2.000 5.500 
36 4.000 2.000 4.000 
39 8.000 2.000 4.000 
37 5.000 1.000 4.000 
38 7.000 1.000 4.000 
40 6.000 12.000 0.000 

 

AREAS POINTS 
101 1 40 2 3 4 5 6 1 
102 1 6 7 8 3 2 1  

 
PLANE RECONSTRUCTION 

PLANIMETRIC POINTS 
1 40 2 1 

 
SURFACES TYPE NO. OF AREAS AREAS 

1 1 (countryside) 2 101 102 
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Plane reconstruction  

 

3D BODIES FACES POINTS 

1000 

1001 3 4 5 6 7 8 3         

1002 4 11 12 5 4             

1003 5 6 7 15 14 13 12 5       

1004 4 3 8 16 10 9 11 4       

1005 7 8 16 15 7             

1006 17 19 20 21 17             

1007 23 24 25 26 23             

1008 13 14 22 21 13             

1009 17 18 26 23 22 21 17         

1010 9 10 18 17 9             

1014 9 11 12 13 21 20 19 17 9     

1012 14 15 16 10 18 26 25 24 23 22 14 

 
2000 

2001 17 19 20 21 17             

2002 19 28 29 20 19             

2003 20 21 22 30 29 20           

2004 17 18 27 28 19 17           

2005 28 31 29 28               

2006 29 30 32 31 29             

2007 27 28 31 32 27             

2008 27 32 30 27               

2009 27 30 22 23 36 33 34 39 26 18 27 

2010 33 36 35 39 34 33           

2011 35 36 37 35               

2012 35 37 38 35               

2013 35 38 39 35               

2014 23 24 37 36 23             

2015 24 25 38 37 24             

2016 25 26 39 38 25             

2017 23 24 25 26 23             

2019 17 18 26 23 22 21 17         
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SOLID RECONSTRUCTION 

 

3D BODIES 
 

NO. OF BODIES 
NO. OF REGIONS 

3D BODIES AND THEIR REGIONS 
REGIONS AND THEIR 3D BODIES 

1000 
3 2000 2000 2000 
3 2001 2017 2019 

2000 
3 1000 1000 1000 
3 1006 1007 1009 

 

BUILDING 3D BODIES NO. OF POINTS POINTS 

1 1 7 
1 2 3 4 5 6 1 
3 4 5 6 7 8 3 

 

3D BODIES NO. OF FACES FACES 

1 23 
1002 1003 1004 1005 1008 1010 1014 1012 2002 2003 2004 2005 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

 

3D BODIES NO. OF FACES FACES 
1 1 1001 

 

AXONOMETRY 
 

 
 

 



26 
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FINAL RECONSTRUCTION 

 

TOPOLOGY 

 

 

THEMATISM 

 

AGAINST WAR AND HUMAN MADNESS !! 
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Montepulciano (Siena) in Tuscany 
 

  

Points in the area  Regions in the area 
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Lines and 3D bodies 

 

  

 

Reduction to sides and regions 
and uncomposing 3D bodies 
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Appendix A – Gestalt theory and perceptual grouping 

 

Principles of Gestalt theory 

The Gestalt principles are a set of laws describing how typically to see objects by grouping similar elements, 

recognizing patterns, simplifying complex images and using the standard “tricks” of perspective design. 

 

 

  Context 

 

 

Proximity  

 Closure 

Continuity   

 Common movement 

Harmony  
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Minimum amount of information (looking for figure and background) 

 

Discrete versus continuous processing 

 

Low binarization threshold                                  High binarization threshold 

           

 

Linear and normal distributed data                                            Data’s equalization 
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Hambiguity drabacks 

 

       

      Moebius’ ring             Klein’s bottle 

 

    

Maurits Cornelis Escher, Water fall, 1961   Ascent descent, 1960 

 

Ambiguity is often associated with negative responses and ambiguity seems restricted to a few situations, 

such as art. Nevertheless theories of judgment formation, especially the processing fluency account, suggest 

that non-ambiguous stimuli are processed faster and therefore are preferred to ambiguous stimuli, which are 

hard to process. 
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Perceptual grouping 

Perceptual system processes global features of objects to identify them and proceeding to a finer analysis. 

 

 

Grouping of 126 data among 500 ones    Replacing the data by symmetry 

 

 

Copy the left part in the right one and vice-versa  Erasing insignificant data 
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Appendix B – Regional and local GIS 

    

Italy (NOAA image)    Calabria Region (ERS1 immagine radar) 

 

  

Shading and 2D ½ DSM of Calbria Region and East Sicily 

 

 
Geodetic network and imagery coverage of Calabria region 
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Vector map in Brianza 2D ½ DSM 

 

 

2D ½ DSM and Texture mapping 

 

  

Documents and queries 
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Appendix C – Remote sensing and Geomatics: two examples 

 

 

North-America        Asia        Europe 

Latin America            Africa  Oceania 

 
CO emissions 

 

 

Histogram and probability of CO emissions in Africa 
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Cluster analysis of CO emissions in center Africa 

 

 

Cluster analysis of CO emissions in Latin America, Africa and Oceania 

 

 
Latitude 

Distribution and non-linear regression of CO emissions in Africa 



38 

 

Inverse distance weighting interpolation of CO emissions in Africa 

 

 

 
Spline interpolation of CO emissions in Africa 
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Pollution in Lombardy Region in fall (data acquisition, mapping and 2D ½ DSM) 
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Pollution in Lombardy Region in winter (data acquisition, mapping and 2D ½ DSM) 
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Pollution in Lombardy Region in spring (data acquisition, mapping and 2D ½ DSM) 



42 

 

 

 

Pollution in Lombardy Region in summer (data acquisition, mapping and 2D ½ DSM) 
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Pollution in Lombardy Region mounth by mounth (2D ½ DSM) 
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Pollution in the Lecco District by contour lines        Pollution in the Como District by contour lines 
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Pollution in the Lecco District by 2D ½ DSM 

 

 

Pollution in the Como District by 2D ½ DSM 
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PART II – DSM 

 

Digital Surface Modeling 

 

Geometric characteristics 

 

 

Voronoi diagram and Delaunay triangulation 

 

 

Construction of a Voronoi point 
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Delaunay criteria 

 

 

 

Delaunay 3D triangulation 
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Delaunay 3D criteria 

 

  

A concave example 

 

 

Additional Delaunay 3D criteria 
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Bèzier triangular spline: definition, construction, testing and assembling 
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Two examples 

 

 

Milan Cathedral statue 

 

 

Data acquisition and contour line modeling 
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Delaunay 3D triangulation 

 

 

Bèzier triangular spline 

 

 

Torre del Sale (Poimbino) area 
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     Data validation 

 

 

Outlier detection      

 

 

3D reconstruction 
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The problem by means of an example 

To create a truly good representation of a three-dimensional object one needs mathematical tools. When the 

object has a complex shape, it’s very difficult to obtain its reconstruction, so different methods of interpolation 

or approximation may be used to generate a Digital Surface Model (DSM) or Triangulated Irregular Network 

(TIN), according to the shape characteristics of the object. In fact, if the object has a continuous curvature 

(convex hull) it is possible to generate a 3D triangular surface employing the Delaunay algorithm. 

Besides, to obtain a good result in terms of visual display it is necessary to apply another algorithm that 

produces Bézier splines on a triangular support. By using this algorithm for the triangulation and smoothing 

of the generated surface, it is also possible to control the series of points which have to be interpolated and 

to fix (a priori) the smoothing level of the final surface, with very small fluctuations. 

Here a method for automatic reconstruction of models of a piecewise smooth surface is described: some 

applications will be shown by means of examples. Of course, a realistic reconstruction of the object shape 

needs a high hardware performance to obtain as a final product the display of the render of the interpolated 

surface (using CAD software). 

The method presented can be divided into steps: 

 

 data acquisition; 

 data processing (topological organization); 

 interpolation and new data prediction by Catmull-Rom splines; 

 selection of an interpolation technique based on the triangulation method (Delaunay algorithm); 

 smoothing of the surface by Bézier splines. 

 

Data acquisition and topological organization 

To obtain a DSM that completely describes an object having a complex surface, it is necessary to survey a 

lot of points. Data acquisition can be obtained by different and mostly automatic technologies: mechanical 

coordinate machine taster, laser scanning, photogrammetry, etc. Among these techniques, photogrammetry 

provides the survey of many interesting points with good results. This task unfortunately can’t be performed 

in a short time and without a great effort by human operators using classical photogrammetry. 

On the contrary, digital photogrammetry can solve this problem by applying the fast and automatic method of 

least squares matching on two or multi images of the object, taken from different points of view. It is 

important, in this kind of survey, to know not only the coordinates of the points, but also their topology. Data 

acquisition sometimes results in a series of n points of the 3D object surface, which are not always organized 

in a topological way. 

In fact if one takes a series of n points, lying on the external surface of a 3D object, it is important to 

reconstruct their topology, before applying the algorithms to interpolate or approximate the object surface. 

Moreover it is necessary that the whole point set lies on the convex hull, to obtain a digital elevation model 

close to the object; on the contrary, when there are only few points on the external surface, it obtains a 3D 

representation is not obtained with an acceptable approximation. Note that there is not only one efficient 

solution for every possible case. 

Data processing, the phase in which the topological structure of the data is fixed, becomes the necessary 

preliminary step for data reordering, using different criteria. 
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In this work, the series of given points, acquired by photogrammetry, is structured in planar sections (like 

contour lines or profiles), where the points are classified by different heights. 

 

 

A sample of 3D data structured in contour lines 

 

Topological organization allows for the reordering of the points belonging to the same planar section, 

researching the relations between the points and then predicting new points. 

Scientific literature describes different criteria to this purpose in a short time and with good results. To this 

aim we decided to apply the minimum distance criterion: two points which lie in the same planar section, are 

neighboring if and only if they are at the minimum distance from one another with respect to any other point 

of the data set. 

During this step the new numbering of the points is done too, and the pre-processing of this topological 

organization is divided into three steps: 

 

 for every planar section, the coordinates of the center are calculated; 

 the reference frame is shifted from the origin to the coordinates of the center; 

 for every planar section a new starting point is identified to organize a new numbering using cylindric 

coordinates with origin in the center. 

 

   

Original position of the points structured in planar sections 
Topological organization by a minimum distance criterion and new numbering 

 

 

Search of a center and shift of the reference frame 
New reordering of the points, starting from first direction 
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The first point is the one coincident with the first direction, so that the new numbering of the series starts 

from this point with the given step, running counterclockwise. 

After data preprocessing it is possible to apply to the reorganized data set interpolating and/or approximating 

functions which allow for a fast prediction of new data. 

 

Interpolation of curves by parametric functions 

The classical interpolation problem involves replacing a complex non-linear function, by a simpler linear 

function, in such a way that the interpolating function and the given function have the same values at 

positions corresponding to a prescribed set of points. 

In this section we present the interpolation of curves given in parametric form (since this is more common in 

practice), rather than functions in the classical form. The parametric representation for curves overcomes the 

problems caused by functional or implicit forms. 

Indeed parametric curves replace the use of geometric slopes (which may be infinite) with parametric 

tangent vectors (which are never infinite). The image of an open, closed, half open, finite, or infinite interval 

under a continuous, locally injective mapping into 2D or 3D space is called a curve. 

A curve can be considered as a set of points, with respect to a given origin. These points can be regarded as 

vectors, which are the values of a locally one-to-one vector-valued function of a given parameter defined on 

above defined interval. This function is called the parametrization of the curve. 

Given n+1 pairwise distinct points in the 3D space, associated with (appropriately selected) parameters, 

there are different polynomials which interpolate a curve and different ways to choose the value of this 

parameter, depending on the final shape of the interpolating curve, on the computing time, on the accuracy 

required. 

We generally prefer the parametrization of curves because it gives us greater flexibility and some 

advantages. In fact, these functions offer: 

 

 less constraints for the control of the shape, since every component is a function of the selected 

parameter; 

 computational advantages and fast programming, since they use the vector-valued form. 

 

The interpolating functions, which are used in particular for many applications in modelling, are polynomials 

of low degree 3  m  5. They describe a given set of empirical data, corresponding to measurements by 

means of curves with different degrees of smoothness and performed in such a way as to minimize a 

prescribed error measure and undesirable fluctuations. 

So a curve is approximated by a piecewise polynomial curve; each segment of the overall curve is given by 

three functions, which are cubic polynomials in the selected parameter. 

Cubic polynomials are most often used, because lower-degree polynomials give too little flexibility in 

controlling the shape of the curve, while higher-degree polynomials can introduce unwanted wiggles and 

also require more computations. 

Higher-degree curves require more conditions to determine the coefficients and can "wiggle" back and forth 

in ways that are difficult to control. Higher-degree curves are used in applications in which higher-degree 

derivatives must be controlled to create surfaces that are aerodynamically efficient. In fact, the mathematical  
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development for parametric curves and surfaces are often given in terms of an arbitrary degree m. 

If we fix m = 3, three cubic polynomials define three curve segments. To deal with finite segments of the 

curve, without loss of generality, we restrict the selected parameter to the a zero-one interval. Setting and 

defining the matrix of the coefficients of the three polynomials, we can rewrite these equations, so that they 

provide a compact way of the same expressions. 

If two curve segments are linked together, the curve has G
0
 geometric continuity. If the directions (but not 

necessarily the magnitudes) of the vectors tangent to the two segments are equal at linkage points, the 

curve has G
1
 geometric continuity. In computer-aided design of objects, G

1
 continuities between curve 

segments are equal at the linkage points. If the tangent vectors of two cubic curve segments are equal (i.e., 

their directions and magnitudes are equal) at the segments linkage points, the curve has first-degree 

continuity in the selected parameter, or parametric continuity, and is said to be C
1
 continuous. 

Each cubic polynomial has four coefficients, so four constraints will be needed, allowing us to formulate four 

equations in the four unknowns, then solving for the unknowns. The three major types of curves are: 

 

 Hermite (defined by two endpoints and two endpoint tangent vectors); 

 Bézier (defined by two endpoints and two more points that control the endpoint tangent vectors); 

 several kinds of splines (each defined by four control points). 

 

The different types of parametric cubic curves can be compared using different criteria, such as ease of 

interactive manipulation, degree of continuity at linkage points, generality and computing time needed. 

To see how these coefficients depend on the four constraints, we suitably rewrite their coefficient matrix, 

using a basis matrix, and a four-element column vector of geometric constraints, called the geometry vector. 

The geometric constraints are the conditions, such as endpoints or tangent vectors, that define the curves 

representing the cubic polynomials in the selected parameter. 

Very often, we have a set of positions and want a curve to interpolate (pass through) them smoothly. The 

Catmull-Rom family of interpolating or approximating splines, also called Over-hauser splines, are useful in 

this situation. A spline belonging to this family is able to interpolate points in the sequence of points. In 

addition, the tangent vector to a certain point is parallel to the line connecting this point and its successive. 

Unfortunately, these splines do not have the convex-hull property. The natural (interpolating) splines also 

interpolate points, but without the local control guaranteed by the Catmull-Rom splines (whose design is 

given by the Catmull-Rom basis matrix and the same geometry vector). 

In this work we have chosen the Catmull-Rom cubic spline curves because they have the characteristic of 

allowing for a fast algorithm. This choice was made also to match these requirements: 

 

 finding an interpolating smoothing curve with C
1
 continuity; 

 finding a curve with only local perturbations, without too many modifications on the complete surface; 

 doing the change of a given point in the series or predicting a new point without having to completely 

compute the curve again but only the neighbors to the point. 

 

The Catmull-Rom cubic spline curves interpolate the point set, in the sequence organized by the preceeding  

topological criterion. In fact, every segment of this curve passes through each point in a parallel direction to  
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the line between the adjacent points with continuous curvature C
1
. The straight-line segments indicate these 

directions. 

 

 

The spline passes through each point in a direction parallel to the line between the adjacent points 

 

The choice of the parameter is free but depends on the final shape that we want to obtain. In the algorithm 

implemented and described in this work, we have used an equally spaced parametrization. The prediction of 

a new point is easy, since we introduce the parametric value t of this new point in the Catmull-Rom equation 

using four points around it. The introduction of a change in the position of a point causes a deviation only in 

the four segments of curve neighboring this point. Therefore this type of curve is only locally disturbed. The 

algorithm implemented uses the series of points previously organized to predict new points on each section, 

necessary to correctly apply, later on, the Delaunay triangulation according to the final complex surface 

representation (as shown in the two following examples). 

 

  

First example of interpolation by Catmull-Rom splines 

Second example of interpolation by Catmull-Rom splines 

 

Note that one must multiply the number of points by a coefficient one for curves of odd order and two for 

curves of even order. This procedure will be useful when the Delaunay triangulation algorithm will be 

exploited to research the connections among the points of different planar sections. 

 

Application of the Delaunay triangulation algorithm 

In this section, we discuss a method, based on the triangulation reconstruction, of the convex-hull of the data  

point set, lying on the planar sections, where the vertices of the triangulation coincide with the given points. 
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For each triangle, we construct a surface patch which interpolates the given function values (and possibly 

also the derivatives) at the vertices. There are a number of methods available and they can be differently 

combined. 

The need to construct a globally optimal triangulation suggests that we work with the d-dimensional version 

of the Delaunay triangulation (the straight-line dual of the Voronoi tessellation). An appropriate triangulation 

is generally chosen such as to satisfy some optimality criterion which guarantees, first of all, a unique 

triangulation, possibly without elongated triangles. 

A globally optimal triangulation (that is, of course, locally optimal) is the triangulation associated with the 

max-min angle criterion. To explore this, we recall that given a point set, the corresponding Dirichlet 

tessellation (also called the Thiessen or Voronoi tessellation) is defined as the partition of 3D space into 

Dirichlet tiles. 

 

 

Voronoi tessellation and associated Delaunay triangulation 

 

By using the Euclidean distances, a polygon consisting of all points which are closer to a given point than to 

any other different point, so that two polygons are pairwise disjoint and all the polygons cover the entire 2D 

space. Given a point a corresponding Dirichlet tessellation can be constructed by finding the perpendicular 

bisectors to the line segments connecting the various neighbor points. 

The Delaunay triangulation of a given points is the dual of the Dirichlet tessellation; two points are connected 

if and only if the two corresponding tiles of the associated Dirichlet tessellation share a common edge. The 

Delaunay triangulation can be constructed using an appropriate circle criterion in 2D dimension or the 

spherical circumscribed circle criterion in 3D dimension. For example, the local circle criterion is satisfied for 

a quadrilateral with vertices provided that the circumscribed circle associated with a first triangle with three 

vertices (selected among the four of the quadrilateral) does not contain the forth vertex of the second triangle 

with three vertices, defined by this forth vertex and by the vertices which share the common edge. 

If the local circle criterion is satisfied for every convex quadrilateral, so is the strong global circle criterion 

which requires that, for every triangle in the triangulation, the associated circumscribed circle contains no 

other data point. 

 

(a) (b)  Local circle criterion: (a) satisfied, (b) not satisfied 
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It is also possible to construct triangulations on curved surfaces using curved triangles (e.g., spherical 

triangles on the surface of a sphere). In fact the spherical circumscribed circle criterion checks whether a 

given point lies inside or outside the spherical circle passing through the three other points. 

 

     

Not admissible        

 Admissible 

Not admissible spherical triangles and admissible spherical triangles 

 

A triangulation method can be applied to general convex surfaces. Given a set of points, we can define a 3D 

triangulation, in direct analogy with the definitions reported above also if there are essential differences 

between triangulations in the plane and those in 3D space which must be underlined. 

 

 

Neighboring triangles with two different diagonals 

 

For example, in the plane the set of points and its convex-hull uniquely determine the number of triangles 

and the number of edges of the triangulation. In a higher dimension this is not so simple. So, in the 3D space 

we cannot always distinguish triangulation on the basis of which data points are connected to each other. 

Moreover, an iterative construction of the triangulation is not always possible in the three-dimensional case. 

While the max-min angle criterion cannot be directly generalized in the 3D space, we can construct the 

Delaunay triangulation by using a version of the circumscribed circle criterion involving (hyper) spheres. 

We want now to illustrate the method to realize a 3D triangulation of a set of points. In the last section we 

have shown the topological and interpolating criteria to organize the data. In this phase we search the 

correspondence among points which belong to planar sections which are next to one another. This is 

important in order to correctly obtain the final triangulated surface; in fact, a wrong correspondence can 

produce a false interpretation of the model of the complex surface. Among the different methods tested to 

search corresponding points lying on neighboring contour lines, we have chosen the “direction criterion”. 

This method is simple and fast also for complex surfaces. It consists in connecting the points, expressed in 

polar coordinates, of planar sections of different order, which have the same angle direction. 
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In this way it is simple to construct the 3D triangulation, because one needs to connect N points predicted on 

a planar section of odd order with 2N points predicted on a planar section of even order; we recall that the 

points must have the same angle direction. Note that in this case we must satisfy the above mentioned 

circle-criterion of Delaunay (as shown in the following two examples). 

 

 

Planar sections of different order: the points with the same angle direction have been connected 

 

 

First example of Delaunay triangulation 
Second example of Delaunay triangulation 

 

Smoothing of the surface by Bézier splines 

Now we will describe a type of surface representation by triangular splines on the Delaunay triangulation. 

Afterwards we will show examples of construction and representation of three-dimensional objects closed by 

a series of surveyed points, obtained fitting the surface constituted by triangular patches. An interpolating 

method using global continuous Cr piecewise polynomial functions is defined using the triangular mesh as 

starting point. 

The last phase of the surface reconstruction produces a new mesh optimization by exploiting the Bézier 

method. This method, although even if it is locally approximated, allows to obtain good results in terms of 

visual display. A triangular control mesh is approximated by a piecewise C1 continuity spline surface 

composed by sestic triangular Bézier patches. 

Modelling of the three-dimensional objects can be obtained through elements (patches) of limited dimension,  
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geometrically simple, easy representable with simple mathematical functions. Every element is formed by 

many points, whose coordinates are given by continuous parametric functions in two variables, defined in the 

limited interval, ranging from zero to one. The choice of the type of patch (triangular, quadrilateral, etc.) and 

the shape of its sides depends on the chosen method of interpolation. For example, if the Delaunay 

triangulation is used, every patch is one of the triangles. If instead, an interpolation with polynomial functions 

is used, the sides will be curvilinear. 

In order to describe such a surface, the parametric equation of the curves is extended to the bidimensional 

case, and if we decide that the geometric vector is, instead of constant (as in the case of parametric curves) 

variable as a function of one of the two selected parameters, the parametric surface of the element is 

obtained. First for notation convenience, we exchange the two selected parameters and then we allow the 

points in the geometric vector to vary in 3D along some path which is parameterized on the first selected 

parameter. 

Thus the geometric vector becomes a matrix, then there are cubic polynomial functions and the cubic 

parametric patches surface is obtained. Indeed we have obtained an equation which shows the dependency 

on the two selected parameters, and we can again isolate a geometric vector, which is a constant: 

The bicubical surface of Bézier with regular shape is a surface constituted by rectangular patches, where the 

geometric matrix consists of 16 control points (or points of Bézier) They are the 16 points that define the 

polyhedron characteristic, and i.e. the patches of the surface of Bézier. They control the slope of the 

boundary curves and the torsions along the boundary curves. 

In many practical applications, when the data are not acquired on a rectangular regular mesh, but they 

represent a series of scattered points, the choice of a patch of rectangular shape is not convenient since 

usually triangulation techniques are applied for the construction of the shape. In the examples illustrated in 

this work the triangular surface patch is considered since it is the more natural choice starting from a 

triangulation of the points. 

 

 

From the triangular mesh to the Bézier patches 

 

To analyze this problem in detail, it is convenient to introduce the Bernstein polynomials, associated with a 

base triangle, to construct the parametric equation of the surface of triangular Bézier splines of degree m=6, 

using the 16 points of Bézier. 

These data form the Bézier net, or Bézier polyhedron, associated with the surface. It immediately follows that  

triangular Bézier surfaces have the convex-hull properties. The convexity of Bézier surfaces is not so easy to  
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be determined that of curves. This is a consequence of the fact that a surface with all convex parametric 

lines is not necessarily convex. 

Since for the construction of the spline of Bézier the coordinates of the control points are required and only 

three of them are defined from the initial data (being the vertices of a triangle coming from a previous 

triangulation of the series of data), the other ones must be obtained using proper criteria, as functions of the 

coordinates of the vertices of the adjacent triangles to the one taken into account. 

An effective method that allows to determine the points of Bézier has been proposed by Loop. This method 

considers the surface approximating the triangles, whose vertices are the 28 points of Bézier. The vertices 

are computed starting from every side, taking into account the continuity C1 with the adjacent sides. The 

method requires to determine four points on every side of the triangular patch and again four points on every 

segment obtained. Also the direction of the plane of the triangular side to which it belongs is needed. 

Therefore the Bézier points completely determine the Bézier surface, and are also affinity invariantly related 

to the surface. The Bézier net associated with a repeated subdivision converges to the Bézier surface. The 

Bézier net approximates the surface, and can be used to compute intersection curves of the Bézier surface. 

If a single Bézier surface is not able to approximate a given surface well enough, then we may use several 

Bézier surface patches which are joined together under prescribed continuity conditions. For example, we 

can require that visual C1 continuity implies geometric C1 continuity. 

 

 

C1 continuity for the triangular Bézier patches 

 

Different cases of continuity must be taken into consideration: 

 

 the first derivatives coincide along and across the common boundary curve between two Bézier patches 

(C1 continuity); 

 the first derivatives coincide along the common boundary curve, and the cross derivatives along the 

boundary curve have the same direction (visual C1 continuity); 

 the two neighboring Bézier patches have the same tangent planes along the common boundary curve 

(geometric C1 continuity). 

 

The parametric continuity C1 between two patches imposes that the control points of Bézier lying on the 

common side and the neighboring points are coplanar. In order to guarantee the continuity of the whole 

surface, besides the continuity conditions between two adjacent elements, it is necessary to guarantee again  
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the continuity condition of all the elements that meet at a vertex. Once solved the continuity conditions of the 

patch, one has to impose conditions in order to prevent superimpositions of the same patch and to define the 

normal vector at every point of the common side. 

By combining several steps of the algorithm implemented, we can subdivide a triangular Bézier patch into an 

arbitrary number of subtriangles of degree m. The sequence of piecewise linear surfaces interpolating the 

Bézier nets converges to the Bézier surface. 

 

  

First example of smoothing surface by Bézier splines 
Second example of smoothing surface by Bézier splines 

 

Usually in designing curves and surfaces, we not only want a good approximation of the data, but also we 

want the curves or surfaces to be “visually pleasing”, in some functional or aesthetic way. In the last section 

of the paper we have described the procedure to generate a good visual final product. Here we present a 

realistic reconstruction of natural object using CAD software. 

 

 

 

First example: rendering, with a realistic visual display 
Second example: rendering, with a realistic visual display 
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Appendix D – Thematic mapping: two examples 
 

 

Technical map of Magenta (MI) 
 

 
Technical map of Magenta (MI): with a densified topography 
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Technical map of Magenta (MI): with a densified topography by contour lines 

 

 
Technical map of Magenta (MI): with a densified topography by 2D ½ DSM 
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UpdatedtTechnical map of Magenta (MI) 

 

Principal steps 2: 

 
 image acquisition and block adjustment; 

 DSM derivation and data modeling; 

 DSM post-processing and visualization; 

 orthoimage formation; 

 superimposition of vector elements. 

 
2 They involve methodologies and procedures of digital photogrammetry and computer aided carthography. 
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Technical map of Mortirolo (BS) by contour lines 

 

 

Updated technical map of Mortirolo (BS) by contour lines 



71 

 

Updated technical map of Mortirolo (BS) by 2D ½ DSM 

 

 

A street profile in the updated technical map of Mortirolo (BS) by 2D ½ DSM 
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Updated technical map of Mortirolo (BS) by shading 

 

 

Original aerial image of Mortirolo (BS) 
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Orthoimage of Mortirolo (BS) 

 

 
Orthoimage of Mortirolo (BS) with superimposition of an updated topographt by contour lines 
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PART III – A CERTAIN TYPE OF NUMBERS WHICH REPRESENT 
SPACE AND TIME AT DIFFERENT DIMENSIONS 

 

Introduction 

The impressive spread of technology produced a great progress in the field of Geo-Information and 

Geomatics, with the hope of ulterior improvements. Unfortunately, a limit to such implements is posed by an 

objective difficulty to manage (and to understand) available data and to build models from them. 

The object paradigm supplies a high level of abstraction too; it is able to model the system according to the 

definition of data (and objects), as well as to operate on the concept of attributes and relations, being both 

stored as an integrating part of the same objects. 

Object oriented representation permits to create complex objects, like polygons, 3D bodies, etc., analyze and 

manipulate them like single objects (even if they are combinations of objects). This characteristic eliminates 

the necessity of clarifying all geographic and semantic attributes of the objects. Furthermore object-oriented 

approach allows for easily description of new types of data, defining operations on new objects and 

structuring the objects in a hierarchical way 

Therefore object, eventually dynamics, modeling is a technologically advanced instrument, which increases 

the capabilities of Informative Systems. Unfortunately the use of this instrument is still rare; in fact it 

remarkably increases the complexity of realization and management of the informative system. Indeed for 

example, several applications in this field require the knowledge of 3D geometry and topology: as well 

known, operating with 3D space is considerably more complex than working with 2D models. 

Particularly for management of spatially referenced data it is necessary to create new entities (i.e. polygons, 

3D bodies, etc.) and to define rules for their processing, like distance, incidence, adjacency, etc. However in 

object oriented systems, some problems of difficult solution, presented by relational models, are still not 

completely solved. The development of these systems is going in two different directions: adding all typical 

functions of the object paradigm to a relational databank, or constructing a new independent system. The 

first approach is very robust, because the databanks are a mature product, while the second approach is still 

an open issue in the scientific and technological research. 

Consequentially object modeling allows the widest modalities to represent 3D bodies and figures for their 

studies and analysis. The relations between characteristic elements (i.e. points, lines, surfaces and 3D 

bodies) determine the validity of this modeling and their sets have correspondences with the groups of 

symmetry in the one-dimensional, two-dimensional and three-dimensional spaces of the formal algebra. It is 

remarkable that many considerations able to allow quick choices, avoiding the Boolean computation of all 

possible combinations – out of which the ones geometrically possible should be taken – have a wide usage 

of the numbers 7, 17 and 32. 

As we look through other fields of human knowledge, we often find strange properties of numbers; specially 

of the over-said numbers, in far distance fields: going from Psychology to figurative arts, from Linguistics to 

religious thought. Although we should never forget that any numbering system is somewhat arbitrary, still 

fancy and rigor are both necessary for a sound evaluation of the world. 

 

Relations among the object elements 

In order to construct a formal data structure, it is necessary to identify geometrical features of objects and 

their relations. 
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As the first step, one may operate with different methods, any case, once complex objects have been 

someway defined, it is necessary to establish their mutual relations in the space, where they are located (in 

terms like: at the right or at the left, inside or outside, over or under, intersects, etc.). Thus we can notice that 

the topological/geometrical relations in one dimension are 7; they are however 17 in 2D environment and 32 

in 3D space. Indeed, in order to obtain a broad starting point, very general relations among complex objects 

are defined, as follows: 

 

 3 classes of relations in the one-dimensional space: between points, points and lines, lines; 

 6 classes of relations in the two-dimensional space: beyond to those of the previous case, between 

points and surfaces, lines and surfaces, surfaces; 

 10 classes of relations in the three-dimensional space: beyond to those of the previous cases, between 

points and 3D bodies, lines and 3D bodies, surfaces and 3D bodies, 3D bodies. 

 

In one dimension, as explaned in the GIS chapter, topological relations are 7: 

 

 Point – point:  separate 

coincident 

 Point – line: external 

internal 

 Line – line: separate 

connected 

internal. 

 

In two dimensions, 10 new relations join to the previous ones, defined for the one-dimensional case, 

reaching the number of 17 topological relations: 

 

 Point – surface: external 

internal 

 Line – surface: external 

connected 

secant 

internal 

enucleating 

 Surface – surface: external 

connected 

internal. 

 

Finally in three dimensions, 15 new relations join the previous ones, defined for the two dimensional case, 

reaching the number of 32 topological relations: 

 

 Point – body:  external 
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internal 

 Line – body: external 

connected 

secant 

internal 

enucleating 

 Surface – body:  external 

connected 

secant 

internal 

enucleating 

 Body – body:  external 

connected 

internal. 

 

The main geometrical relations among primary elements are not lesser than: 

 

 10 geometrical relations, for the one-dimensional case; 

 32 geometrical relations, for the two-dimensional case; 

 230 geometrical relations, for the three-dimensional case 

 

Especially, in the three-dimensional case, it is quite easy to reach the number of 230 elements. In fact, while 

a point is a point and a body a body, a line can be open or close, and it can occupy an open area or close 

area, as well as a volume; moreover a surface can be open or close, and it can occupy a volume. 

 

About Symmetries 

Many examples of symmetries due to rotation, translation, reflection can be noticed both in arts and 

sciences. Another type of transformation – not geometrical however – is permutation, starting with Latin 

squares as studied by Euler. 

A permutation symmetry may also take place in abstract cases: the proposition “X is a relative to Y” is 

symmetrical: actually, the meaning won’t change if Y takes the place of X. This does not hold, when the 

proposition is “Y is the son of X” as for as the logical reasoning is concerned. 

According to the psychoanalyst Ignacio Matte Blanco, logic of unconscious system is different from one valid 

for the “normal” one: “… the unconscious system deals with the inverse relation the same as if it were 

identical to the direct” too. In other terms, asymmetric propositions become symmetrical: in the above quoted 

use, Y is the son of X, of course in the world of our dreams, that is the unconscious (or changing a word “Y is 

the father of X”). 

We can then place problem of symmetry at the crossroads of science, art, psychology. The Gesthalt 

Psychology has widely enlightened the relevance of symmetry: as different organizations are theoretically 

possible of information available to our senses, human mind choices the simple one and the symmetrical 

one. 
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A proper language for symmetries is the group theory: the whole of all the transformations gives place to a 

group. Abel and Galois, two very young people, first found group theory: even their lives, in a certain sense, 

appear as symmetrical. Indeed they both started with the same problem (resolution of fifth grade equation) to 

reach the general theory of groups, in two different ways 
3
. 

The prohibition of figurative arts for Hebrews and Arabs carried to the development of a pure abstract and 

geometrical art and to the exploration of possible types of decoration. In this field, the most elevated result 

was reached in Granada in the 14th century, with the tessellation of the Alhambra. 

Although the number of decorations is nearly unlimited, they are limited as far as the type of symmetries 

adopted for their repetition. From a mathematical point of view, these symmetries can be classified based on 

possible transformations, which leave them unvaried: translation along a direction, reflection with respect to 

a straight-line and rotation around to a point. 

In 1891, Fedorov demonstrated that only 7 types of symmetry for liner decorations and only 17 for the planar 

ones exist. Furthermore the planar groups can only present rotational symmetry for angles of 180°, 120°, 

90°, 60°, which correspond to the axial, triangular, squared and hexagonal rotation angles. 

If most common examples of linear and planar symmetry are decorations, most common examples of spatial 

symmetry are crystals. 

From 1849 with Auguste Bravais, the crystallography has been one of first fields of application of group 

theory of symmetries. In 1890, before demonstrating the analogous results for the groups of planar 

symmetry, Fedorov had demonstrated that only 230 types of spatial symmetry exist. 

The first part of the 18th problem of Hilbert asked whether groups of symmetry in n dimensions are a finite 

number for every n. In 1910, a positive answer was given by Ludwig Bieberbach; however an explicit relation 

is not yet found giving the number of groups of symmetry for any n given. In fact, the existence of 4783 types 

of four-dimensional symmetry was demonstrated only in ’70. 

Symmetry means invariant respect to a group of transformations and, if the transformation is a distance, the 

symmetry becomes an isometry. In the plan, four types of isometry exist: translation, rotation, reflection and 

glisso-reflection 
4
. 

The study of topological and geometrical relations among primary elements and groups of symmetries, in the 

spaces where the complex objects are located, shows particularly curious identities between the number of 

these relations and the cardinality of groups of symmetries. 

In fact, as above shown, topological relations in one dimension are 7, as many as are the elements of the 

group of liner symmetries, which have one single direction of translation. 

The same analogy is evident in two dimensions where, in correspondence to 17 topological relations, an 

identical number of elements forms the group of symmetries in the plan, considering two directions of 

translation. 

Still to the 32 topological relations, characterized in three dimensions, correspond the elements of the group 

of symmetries in 3D space, considering three directions of translation and crystallographic restriction. 

Furthermore considering the main geometrical relations: 

 
3
 Also both of them met great difficulties with the academic world, had lots of troubles in their private life and died very young. Moreover 

they should special interest for social life, for art and politics. Singular was also their death: Abel died with malnutrition and related 
diseases, Galois lost his life in a duel, for a woman. 
4 Notice that rotation can be replaced by two suitable reflections, as well as translation; moreover glisso-reflection can be reduced to one 
reflection, followed by one translation. 
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 10 (number of elements in one-dimensional case) corresponds to the number of elements of the group of 

symmetries in plan, considering crystallographic restriction; 

 32 (number of elements in two-dimensional case) corresponds to the number of elements of the group of 

symmetries in 3D space, again considering crystallographic restriction; 

 230 (number of elements in three-dimensional case) corresponds to the number of elements of the 

group of symmetries in 3D space, without any restriction, 

 

being 4 the number of elements of the group of liner symmetries, considering crystallographic restriction. 

 

Numbers running after each other 

It is remarkable that many considerations able to allow quick choices, avoiding the Boolean computation of 

all possible combinations-out of which the ones geometrically possible should be taken – have a wide usage 

of numbers 7, 17 and 32. We can also add to the over said consideration about the groups of symmetries, 

that we have 7 Euclidean and spherical finite 2D surfaces (plane, cylinder, Moebius strip, torus, Klein bottle, 

sphere, projective plane) and 17 3D Euclidean hyper-surfaces (aside from the 3D Euclidean space and the 

Euclidean space with a hole, i.e. a torus in a translation motion). On the opposite, hyperbolic 2D surfaces, as 

well as hyperbolic and spherical 3D hyper-surfaces are both infinite: by now, studies about 4D surfaces of 

any type are not yet completed. 

First of all, we have 5 regular polyhedrons, (known as Platonic, however Pythagoric), in addition to (13+4) 

semi-regular and concave polyhedrons (Archimedean and due to Keplero-Poinsot): the total is 17, as below: 

 

Regular 3D bodies Semi-regular polyhedrons Concave bodies by Kepler – Poinsot 

1. tetrahedron 

2. octahedron 

3. cube 

4. dodecahedron 

5. icosahedron 

1. cube – octahedron 

2. icosa – dodecahedron 

3. truncated tetrahedron 

4. truncated cube 

5. truncated octahedron 

6. truncated dodecahedron 

7. truncated icosahedron 

8. rhombi cubic octahedron 

9. truncated cube – octahedron 

10. rhombi icosa dodecahedron 

11. truncated icosa – 

dodecahedron 

12. snub cube 

13. snub dodecahedron 

14. small star-dodecahedron  

15. big star-dodecahedron 

 

16. big dodecahedron 

17. big icosahedron 

 

Besides in the last times, a group of no lesser than 92 convex solids has been defined, proven as complete 

by Zaigaller, the Johnson’s solids, having all faces made with the regular polygons, without being any of over  
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listed polyhedrons, nor prisms or anti-prisms. Other than pyramids, domes and rotund (simple and modified), 

and augmented prisms, they have 7 Platonic modified solids, 19 Archimedeon modified polyhedrons and 

some mixed solids (3 of them are called sphenoid-corona-simplex, augmented and mega). A super class of 

32 elements is formed with for the last but one class, the selected members of the last class, plus three more 

complex concave polyhedrons and 7 truncated concave polyhedrons (obtained from the last ones and from 

previous four concave polyhedrons by Kepler and Poinsot). 

Then quite curious is the fact that the number 2 has a logical link with opposite couples, first of all the right-

left one, and also that, after this number, the other ones are far from each other by multiples of 5 (the fingers 

of a hand): 

 

2 + 5 = 7  7 + 10 = 17  17 + 15 = 32 

 

Also remember that 32+20=52, i.e. the number of weeks in a solar year of the earth: that adds a timely 

dimension – a fourth one – to the three dimensions of a 3D space. For the last: 52 + 25 = 77, 77 = 7  11, 

and 11 is the first prime number after 7. The numbers running each after other never come by chance, so we 

should pay attention to the following considerations. 

Hence grammatical and syntactic rules supply interesting additional examples, such as the qualitative 

degree of plurals: 

 

 a few, some, several, many, 

 less than, as many as, greater than, 

 

in an evolved specific character of human language and offer a number of possibilities equal to 7, like 

everything else that may be referred to a linear order. Moreover adverbs and adverbial circumlocutions for 

time and locations: 

 

Now Here 

Before, after Near, far 

Often. Rarely Forward, backward 

In short, at long Rights, lefts 

 Above, under 

 Inside, outside 

 Nearby, in touch 

 Along, through 

 Densely, sparsely 

 

are grouped in order to represent and explain phenomena and processes time-variant, i.e., dynamic, and 

geo-referential (mainly with two-dimensional spatial reference or in 2 ½ D). It should then be remarked that 7 

and 17 are recurrent numbers in linear and planar context, for instance in symmetries of friezes and mosaics, 

topological relations 1D and 2D. 

Hereby follows the table of locative case, numbering nine: 
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Locative cases: State in Motion from Motion to 

interiority inexiv elativ illativ 

superficiality superexiv delativ sublativ 

adherence adexiv ablativ allativ 

 

It is the maximum number, for some Hindu-European languages: however only for them a complete 

classification and comparative studies are available. One may also get a number of 16, when adding the 

“motion to” circumscribed, (when it is never referred to an own specific case), also including exteriority 

among positions, or even 32 if one takes into account compound objects, in addition to simple ones. The 

same number is recurrent in spatial analysis too, for instance in crystal symmetry, or in 3D topological 

relations. 

 

Theory of numbers 

Some curiosity has been widely known for many centuries: for instance, correspondence between the order 

of 30- and 28-day months alternated to the ones with 31 days (5+7=12, from the month following spring 

equinox) and the harmonic series of notes (see also the 17th century studies on the well-tempered 

harpsichord: 

 

N Months Days Musical notes Tastes 

1 April 30 La flat Black 

2 May 31 La White 

3 June 30 Si flat Black 

4 July 31 Si White 

5 August 31 Do White 

6 September 30 Re flat Black 

7 October 31 Re White 

8 November 30 Mi flat Black 

9 December 31 Mi White 

10 January 31 Fa White 

11 February 28 or 29 Sol flat Black 

12 March 31 Sol White 

 

In his time, a young and poor Indian mathematician, Ramanujan (1887-1920) has utterly extended the field 

of such add properties by remarking, e.g: 

 

1729 = 1000 + 729 = 103 + 93 = 1728 + 1 = 123 + 13 

1089  9 = 332  32 = 9801 (reverse of 1089) 

2178  4 = (2  1089)  22 =8712 (reverse of 2172) 

 

which means that no smaller number can be expressed as a double sum of two different cubes also no other  

number lower than 10.000 can be decomposed into two factors, one of them being itself written as reverse. 
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The Theory of numbers was first due to Pythagoras, Euclid and Eratosthenes, had some authors in the 

Middle Age (Fibonacci) and a new flourishing between ‘600 and ‘700, first with Marsenne and Fermat, later 

with Euler and Legendre. A new approach in the XIX century, after Gauss, has come from many 

mathematicians: it has proved to be a really fascinating and surprising game (cubic set of four numbers are 

more than Pythagorean terns, as linked to the so called last theorem by Fermat, only recently demonstrated: 

an + bn = cn , being n≤2 and a, b, c integers). 

It is still to demonstrate, among other things, the reason why perfect numbers (i.e. numbers equal to the sum 

of all their divisors, included one and except the number itself: 6, 28, 946, 8128, …; about fifty are known at 

present) are all even. Merely for a curiosity, and for a natural sympathy with the name two numbers are 

called friendly, when they exchange the sum of each other’s divisors (e.g., 220 and 284, 1184 and 1210, 

2620 and 2984, 5020 and 5564, 6232 and 6368, …), for them, the first odd couple is 12285 and 14595, while 

a mixed couple, theoretically possible, is not yet known, for numbers below one million. 

Moreover a number of psycho-linguistic determination show, possibly independently from each other 

(anyway the correspondence is surprising), that the above said numbers 7 (with an interval 5-9), 17, 32 are: 

 

 maximum amount of information that can be stored in short term memory; 

 maximum amount of that can be easily stored in long-term memory (by re-iteration); 

 maximum amount of information that can be stored in long-term memory by so-called method of loci, 

 

This method (loci), already widespread in the Greek-roman world for rhetorical applications and re-used in 

the Renaissance and later, as an art of memory technique, realizes an association of a selected arguments 

with more familiar information, easier to remember. 

 

Conclusion 

Everybody know the Eleatic paradox stating that the quick-foot Achilles shall never recovery on the tortoise: 

other paradoxes of the same origin cope with concepts of zero and infinity. Nowadays, zero is a number, 

quite well known, and infinity is the limit of an impossible division between a finite numerator and a null 

denominator. However zero comes to Europe in the Middle Ages, imported by Arabs, which learned it from 

Persians, in turn taking the concept from Indians, maybe the only ancient civilization able to make up an 

Arithmetic devoted to calculus. 

The lack of number zero is the cause of infinity being thought of by paradoxes. Although the entire western 

antiquity (Middle East, North Africa, Mediterranean Europe) had a clear concept about void, absence and 

nothing, the number zero could not be conceived. So, the first century flows from the year one to the 

hundredth, as (even today) the ordinal zero does not exist. Notwithstanding the number zero has come to 

Europe in the Middle Age, the concept of limit has been formed only between the seventeenth and the early 

nineteenth century, by Leibnitz, Newton, Euler, Lagrange, Lapalce, Gauss and Cauchy: as a natural 

consequence of the discovery of infinity comes a rigorous definition – in the mathematical sense – also of the 

concept of infinity (stressed by Weierstrass, Dedekin, Cantor, Peano and Hilbert). Sure it is not a number, 

but a mathematical devices, of a great use to face a lot of simple or complex studies. 

A laic behavior means thinking and writing about religious themes, in full respect for people who have them 

as important of their life, but asking for a correspondent respect for people having little or no interest for such  
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problems. Any other behavior is obviously fundamentalist and/or obscurantist. In this view, we take into 

consideration some numbers from Western religions (Hebraism, Christendom, Islam), compared with other 

numbers from Oriental-type religions (Hinduism, Buddhism, Confucianism, Taoism, Shintoism). The number 

7 is the number of the days of Creation in the Book of Genesis in Bible: from it comes evidently the number 

of days of our week. Also the Decalogue lists 10 commandments, divided into three (a complementary 

number between 2 and 5) plus 7 (Exodus book). The same numbers are quite frequent in other sections of 

the same text. 

However remarkable, is the number 5 of Islamic prescriptions, as reported in the Koran. Even without a deep 

knowledge of oriental religious thought, it is noteworthy to quote the 4 lifecycles, the 4 aims of human life, the 

4 classes of Hindu society, as well as the 4 noble truths and the noble 8-fold pathway of Buddhism (to which 

are also linked some ancient Chinese and Japanese religious schools). They put in evidence different 

numeric games: actually, 4 and 8 are the first two powers of 2; also they do not consider the number 5, nor 3 

or 7 (difference and sum, respectively). 

In the history of mankind, agricultural and domestication of animals has been widespread in many countries, 

from China to Mediterranean basin. The history of human cultures show since from Antiquity an evident 

diversification between East and West: it should be the task and the good wish of our age to overcome this 

ancient dichotomy. 

A plain conclusion of any reflection, serious or amusing, should always be an open one. Numbers 7, 17 and 

32 are surely meaningful: 7 is to be found in may tales from Romanticism, 17 in Tzigane stories, 32 is in the 

Jewish Cabala. 

In any case, any numbering system is arbitrary in itself: it is only a useful device, able to check and 

understand real world, in its complexity and variability. So an easy quest could find other tales based upon 

prime numbers 13, 19 and 23 (maybe, as related to the 24 daily hours), and also upon the following prime 

numbers 29 and 31 (maybe, as related to the days of longer months). However, other tales are related to the 

number 91 (not a prime one), 93 and 97, which are prime, but comparatively large. 

Although we should never forget the arbitrary of numbering, still fancy and rigor are both necessary for a 

sound evaluation of the world. Finally the present considerations want only to express a qualitative point of 

view, while mathematical implications would often require to proof complex theorems. 

 

 

Pablo Picasso (Paris, 1949): Peace pigeon, 
drawn for the Congress of World Peace 



83 

Appendix E – Examples of modern survey and mapping data sources 

 

  

Satellite to satellite tracking and satellite geodesy (e.g. GPS) 

 

 

 

Google earth 
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Google Maps (at small scale) 

 

 

 

Google Maps (at medium scale) 
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Google Maps (at large scale) 

 

 

Video-surveillance (e.g. by CCD camera) 
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GPS antenna        Drone 

 

 

Digital camera 

 

    

Digital theodolite      Digital level 
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Robotics and home automation 
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Web GIS 
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Appendix F – Comparison of measure units and data processing hardware 

 

SCS measures SCS equivalent SI equivalent 

mil 1/25 line 0,0254 mm 

line 1/4 inch or 25 lines 0,635 mm 

inch 1/4 hand or 4 lines 25,4 mm 

hand 1/3 foot or 0,4 span or 4 inches 101,6 mm 

span 1/2 cubit or 2,25 hands 228,6 mm 

foot 1/3 yard or 3 palms 304,8 mm 

cubit 1/2 yards or 2 spans 0,4572 m 

yard 1/2 fathom or 2 cubits or 3 feet 0,9144 m 

fathom 0,36 perch or 2 yards 1,8288 m 

rod, pole or perch 1/4 chain or 2,75 fathoms 5,0292 m 

chain 1/10 furlong or 4 perches 20,1168 m 

furlong 1/8 statute mile or 10 chains 201,168 m 

statute mile 8 furlongs 1609,344 m 

Measures of length 

 

SCS measures SCS equivalent SI equivalent 

liquid ounce 1/5 gill 28,4 ml 

gill 5 liquid ounces or 1/4 pint 142 ml 

pint 4 gill or 1/2 quart 0,568 l 

quart 1/4 gallon or 2 pints 1,1364 l 

gallon 4 quarts 4,546 l 

Measures of capacity 
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SCS measures SCS equivalent SI equivalent 

grain 1/7000 pound ~64,798 mg 

dram 1/16 ounce ~1,771845 g 

ounce 1/16 pound or 16 drams ~28,349523 g 

pound 1/14 di stone or 16 ounces 453,59237 g 

stone 1/2 di quarter or 14 pounds ~6,35 kg 

quarter 1/4 di hundredweight or 2 stones ~12,7 kg 

hundredweight 1/20 di long ton or 4 quarters ~50,8 kg 

long ton 20 hundredweights 1016,0 kg 

Measures of weight 

 

Data processing hardware 

 

 

Logarithmic and trigonometric tables (18th century) 

 

 

Slide rule (19th century)      
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Burroughs addition and subtraction machine (18th century) 

 

 

 

 

Brunswig four operation machine (19th century) 
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First computer in the ‘50s of 20th centuty 

 

 

Second generation computer in the ‘70s of 20th century 

 

 

Workstation in the ’90 of 20th century   

 

 

PC in the ‘10th of 21 century 
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